Differentials
The following general rules can be applied to all differentials,
where f() and g() are functions.
d/dx( n f(x) ) |
= |
n d/dx( f(x) ) |
d/dx( f(x) + g(x) ) |
= |
d/dx( f(x) ) + d/dx( g(x) ) |
d/dx( f(x) g(x) ) |
= |
f(x) d/dx( g(x) ) + g(x) d/dx( f(x) ) |
d/dx( f(x) / g(x) ) |
= |
( g(x) d/dx( f(x) ) - f(x) d/dx( g(x) ) ) / g2(x) |
d/dx( f( g(x) ) |
= |
d/dg( f(x) ) d/dx( g(x) ) |
Differentials of Common Functions
Function F(x) = y |
Differential F'(x) = dy / dx |
xn |
n xn-1 |
1/x |
-1/x2 |
eax |
a eax |
Ln x |
1/x |
Logax |
1/x Logae |
sin ax |
a cos ax |
cos ax |
-a sin ax |
tan ax |
a sec2 ax |
cosec x |
- cot x cosec x |
sec x |
tan x sec x |
cot x |
- cosec2 x |
arcsin(x/a) |
1 / √ ( a2 - x2 ) |
arccos(x/a) |
-1 / √( a2 - x2 ) |
arctan(x/a) |
a / ( a2 + x2 ) |
|