Integrals
The following general rules can be applied to all integrations, where f() and g() are functions.
∫ ( n f(x) ) dx |
= |
n ∫ f(x) dx |
∫ ( f(x) + g(x) ) dx |
= |
∫ f(x) dx
+ ∫ g(x) dx |
∫ ( f(x) g(x) ) dx |
= |
f(x) ∫g(x) dx
- ∫(d/dx( f(x) )
∫g(x) dx) dx |
Integrals of Common Functions
Function F(x) = y |
Integral ∫ y dx |
xn |
1/(n + 1) xn+1 |
1/x |
Ln x |
eax |
1/a eax |
Ln x |
x Ln x - x |
Logax |
x Loga (x / e) |
sin ax |
-1/a cos ax |
cos ax |
1/a sin ax |
tan ax |
-1/a Ln (cos ax) |
cosec x |
Ln(cosec x - cot x) |
sec x |
Ln( sec x + tan x) |
cot x |
Ln sin x |
arcsin(x/a) |
x arcsin(x/a) + √( a2 - x2) |
arccos(x/a) |
x arccos(x/a) - √( a2 - x2) |
arctan(x/a) |
x arctan(x/a) - a Ln √( a2 + x2) |
|